Data mining with Big Data

Detalles Bibliográficos
Autor Principal: Wu, Xindong
Otros autores o Colaboradores: Zhu, Xingquan, Wu, Gong-Qing
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1109/TKDE.2013.109
Consultar en el Cátalogo
Resumen:Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expanding in all science and engineering domains, including physical, biological and biomedical sciences. This paper presents a HACE theorem that characterizes the features of the Big Data revolution, and proposes a Big Data processing model, from the data mining perspective. This data-driven model involves demand-driven aggregation of information sources, mining and analysis, user interest modeling, and security and privacy considerations. We analyze the challenging issues in the data-driven model and also in the Big Data revolution.
Notas:Formato de archivo PDF.
Descripción Física:1 archivo (438 KB)
DOI:10.1109/TKDE.2013.109

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170500.0
008 230201s2014 xxu o 000 0 eng d
024 8 |a DIF-M8040  |b 8256  |z DIF007343 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Wu, Xindong 
245 1 0 |a Data mining with Big Data 
300 |a 1 archivo (438 KB) 
500 |a Formato de archivo PDF. 
520 |a Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expanding in all science and engineering domains, including physical, biological and biomedical sciences. This paper presents a HACE theorem that characterizes the features of the Big Data revolution, and proposes a Big Data processing model, from the data mining perspective. This data-driven model involves demand-driven aggregation of information sources, mining and analysis, user interest modeling, and security and privacy considerations. We analyze the challenging issues in the data-driven model and also in the Big Data revolution. 
534 |a IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1), pp. 97-107 
650 4 |a BIG DATA 
650 4 |a MINERÍA DE DATOS 
700 1 |a Zhu, Xingquan 
700 1 |a Wu, Gong-Qing 
856 4 0 |u http://dx.doi.org/10.1109/TKDE.2013.109 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A1099  |7 3  |8 BD  |9 82679  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A1099   |r 2025-03-11 17:05:00  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=2052  |w 2025-03-11  |y CP 
999 |c 57118  |d 57118