Big data fundamentals : concepts, drivers & techniques
Autor Principal: | |
---|---|
Otros autores o Colaboradores: | , |
Formato: | Libro |
Lengua: | inglés |
Datos de publicación: |
Indiana :
Prentice Hall,
2016
|
Edición: | 1st ed. |
Temas: | |
Acceso en línea: | Consultar en el Cátalogo |
Notas: | Incluye índice |
Descripción Física: | xv, 218 p. : il. |
ISBN: | 9780134291079 |
Tabla de Contenidos:
- PART I: THE FUNDAMENTALS OF BIG DATA
- CHAPTER 1: Understanding Big Data
- Concepts and Terminology
- Datasets
- Data Analysis
- Data Analytics
- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics
- Business Intelligence (BI)
- Key Performance Indicators (KPI)
- Big Data Characteristics
- Volume
- Velocity
- Variety
- Veracity
- Value
- Different Types of Data
- Structured Data
- Unstructured Data
- Semi-structured Data
- Metadata
- Case Study Background
- History Technical
- Infrastructure and Automation Environment
- Business Goals and Obstacles
- Case Study Example
- Identifying Data Characteristics
- Volume Velocity
- Variety
- Veracity
- Value
- Identifying Types of Data
- CHAPTER 2: Business Motivations and Drivers for Big Data Adoption
- Marketplace Dynamics
- Business Architecture
- Business Process Management
- Information and Communications Technology
- Data Analytics and Data Science
- Digitization
- Affordable Technology and Commodity Hardware
- Social Media
- Hyper-Connected Communities and Devices
- Cloud Computing
- Internet of Everything (IoE)
- Case Study Example
- CHAPTER 3: Big Data Adoption and Planning Considerations
- Organization Prerequisites
- Data Procurement
- Privacy
- Security
- Provenance
- Limited Realtime Support
- Distinct Performance Challenges
- Distinct Governance Requirements
- Distinct Methodology
- Clouds
- Big Data Analytics Lifecycle
- Business Case Evaluation
- Data Identification
- Data Acquisition and Filtering
- Data Validation and Cleansing
- Data Aggregation and Representation
- Data Analysis Data Visualization
- Utilization of Analysis Results
- Case Study Example
- Big Data Analytics Lifecycle
- Business Case Evaluation
- Data Identification
- Data Acquisition and Filtering
- Data Extraction
- Data Validation and Cleansing
- Data Aggregation and Representation
- Data Analysis
- Data Visualization
- Utilization of Analysis Results.
- CHAPTER 4: Enterprise Technologies and Big Data Business Intelligence
- Online Transaction Processing (OLTP)
- Online Analytical Processing (OLAP)
- Extract Transform Load (ETL)
- Data Warehouses
- Data Marts Traditional BI
- Ad-hoc Reports
- Dashboards
- Big Data BI
- Traditional Data Visualization
- Data Visualization for Big Data
- Case Study Example
- Enterprise Technology
- Big Data Business Intelligence
- PART II: STORING AND ANALYZING BIG DATA
- CHAPTER 5: Big Data Storage Concepts
- Clusters
- File Systems and Distributed File Systems
- NoSQL
- Sharding
- Replication
- Master-Slave
- Peer-to-Peer
- Sharding and Replication
- Combining Sharding and Master-Slave Replication
- Combining Sharding and Peer-to-Peer Replication
- CAP Theore
- ACID
- BASE
- Case Study Example
- CHAPTER 6: Big Data Processing Concepts
- Parallel Data Processing
- Distributed Data Processing
- Hadoop
- Processing Workloads
- Batch
- Transactional
- Cluster
- Processing in Batch Mode
- Batch Processing with
- MapReduce Map and Reduce Tasks
- Map
- Combine
- Partition
- Shuffle and Sort
- Reduce
- A Simple MapReduce Example
- Understanding MapReduce Algorithms
- Processing in Realtime Mode
- Speed Consistency Volume (SCV)
- Event Stream Processing
- Complex Event Processing
- Realtime Big Data Processing and SCV
- Realtime Big Data Processing and MapReduce
- Case Study Example
- Processing Workloads
- Processing in Batch Mode
- Processing in Realtime
- CHAPTER 7: Big Data Storage Technology
- On-Disk Storage Devices
- Distributed File Systems
- RDBMS Databases
- NoSQL Databases
- Characteristics
- Rationale
- Types
- Key-Value
- Document
- Column-Family
- Graph
- NewSQL Databases
- In-Memory Storage Devices
- In-Memory Data Grids
- Read-through
- Write-through
- Write-behind
- Refresh-ahead
- In-Memory Databases
- Case Study Example
- CHAPTER 8: Big Data Analysis Techniques
- Quantitative Analysis
- Qualitative Analysis
- Data Mining
- Statistical Analysis
- A/B Testing
- Correlation
- Regression
- Machine Learning
- Classification (Supervised Machine Learning)
- Clustering (Unsupervised Machine Learning)
- Outlier Detection
- Filtering
- Semantic Analysis
- Natural Language Processing
- Text Analytics
- Sentiment Analysis
- Visual Analysis
- Heat Maps
- Time Series Plots
- Network Graphs
- Spatial Data Mapping
- Case Study Example
- Correlation
- Regression
- Time Series Plot
- Clustering
- Classification
- APPENDIX A: Case Study Conclusion
- About the Authors
- Thomas Erl
- Wajid Khattak
- Paul Buhler
- Index