Big data fundamentals : concepts, drivers & techniques

Detalles Bibliográficos
Autor Principal: Erl, Thomas
Otros autores o Colaboradores: Khattak, Wajid, Buhler, Paul
Formato: Libro
Lengua:inglés
Datos de publicación: Indiana : Prentice Hall, 2016
Edición:1st ed.
Temas:
Acceso en línea:Consultar en el Cátalogo
Notas:Incluye índice
Descripción Física:xv, 218 p. : il.
ISBN:9780134291079

MARC

LEADER 00000nam a2200000 a 4500
003 AR-LpUFIB
005 20250311170443.0
008 230201s2016 xxua r 000 0 eng d
020 |a 9780134291079 
024 8 |a DIF-M7424  |b 7641  |z DIF006791 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Erl, Thomas 
245 1 0 |a Big data fundamentals :  |b concepts, drivers & techniques 
250 |a 1st ed. 
260 |a Indiana :  |b  Prentice Hall,  |c 2016 
300 |a xv, 218 p. :  |b il. 
500 |a Incluye índice 
505 0 |a  PART I: THE FUNDAMENTALS OF BIG DATA -- CHAPTER 1: Understanding Big Data -- Concepts and Terminology -- Datasets -- Data Analysis -- Data Analytics -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Business Intelligence (BI) -- Key Performance Indicators (KPI) -- Big Data Characteristics -- Volume -- Velocity -- Variety -- Veracity -- Value -- Different Types of Data -- Structured Data -- Unstructured Data -- Semi-structured Data -- Metadata -- Case Study Background -- History Technical -- Infrastructure and Automation Environment -- Business Goals and Obstacles -- Case Study Example -- Identifying Data Characteristics -- Volume Velocity -- Variety -- Veracity -- Value -- Identifying Types of Data -- CHAPTER 2: Business Motivations and Drivers for Big Data Adoption -- Marketplace Dynamics -- Business Architecture -- Business Process Management -- Information and Communications Technology -- Data Analytics and Data Science -- Digitization -- Affordable Technology and Commodity Hardware -- Social Media -- Hyper-Connected Communities and Devices -- Cloud Computing -- Internet of Everything (IoE) -- -- Case Study Example -- CHAPTER 3: Big Data Adoption and Planning Considerations -- Organization Prerequisites -- Data Procurement -- Privacy -- Security -- Provenance -- Limited Realtime Support -- Distinct Performance Challenges -- Distinct Governance Requirements -- Distinct Methodology -- Clouds -- Big Data Analytics Lifecycle -- Business Case Evaluation -- Data Identification -- Data Acquisition and Filtering -- Data Validation and Cleansing -- Data Aggregation and Representation -- Data Analysis Data Visualization -- Utilization of Analysis Results -- Case Study Example -- Big Data Analytics Lifecycle -- Business Case Evaluation -- Data Identification -- Data Acquisition and Filtering -- Data Extraction -- Data Validation and Cleansing -- Data Aggregation and Representation -- Data Analysis -- Data Visualization -- Utilization of Analysis Results. -- CHAPTER 4: Enterprise Technologies and Big Data Business Intelligence -- Online Transaction Processing (OLTP) -- Online Analytical Processing (OLAP) -- Extract Transform Load (ETL) -- Data Warehouses -- Data Marts Traditional BI -- Ad-hoc Reports -- Dashboards -- Big Data BI -- Traditional Data Visualization -- Data Visualization for Big Data -- Case Study Example -- Enterprise Technology -- Big Data Business Intelligence -- PART II: STORING AND ANALYZING BIG DATA -- CHAPTER 5: Big Data Storage Concepts -- Clusters -- File Systems and Distributed File Systems -- NoSQL -- Sharding -- Replication -- Master-Slave -- Peer-to-Peer -- Sharding and Replication -- Combining Sharding and Master-Slave Replication -- Combining Sharding and Peer-to-Peer Replication -- CAP Theore -- ACID -- BASE -- Case Study Example -- CHAPTER 6: Big Data Processing Concepts -- Parallel Data Processing -- Distributed Data Processing -- Hadoop -- Processing Workloads -- Batch -- Transactional -- Cluster -- Processing in Batch Mode -- Batch Processing with -- MapReduce Map and Reduce Tasks -- Map -- Combine -- Partition -- Shuffle and Sort -- Reduce -- A Simple MapReduce Example -- Understanding MapReduce Algorithms -- Processing in Realtime Mode -- Speed Consistency Volume (SCV) -- Event Stream Processing -- Complex Event Processing -- Realtime Big Data Processing and SCV -- Realtime Big Data Processing and MapReduce -- Case Study Example -- Processing Workloads -- Processing in Batch Mode -- Processing in Realtime -- CHAPTER 7: Big Data Storage Technology -- On-Disk Storage Devices -- Distributed File Systems -- RDBMS Databases -- NoSQL Databases -- Characteristics -- Rationale -- Types -- Key-Value -- Document -- Column-Family -- Graph -- NewSQL Databases -- In-Memory Storage Devices -- In-Memory Data Grids -- Read-through -- Write-through -- Write-behind -- Refresh-ahead -- In-Memory Databases -- Case Study Example -- CHAPTER 8: Big Data Analysis Techniques -- Quantitative Analysis -- Qualitative Analysis -- Data Mining -- Statistical Analysis -- A/B Testing -- Correlation -- Regression -- Machine Learning -- Classification (Supervised Machine Learning) -- Clustering (Unsupervised Machine Learning) -- Outlier Detection -- Filtering -- Semantic Analysis -- Natural Language Processing -- Text Analytics -- Sentiment Analysis -- Visual Analysis -- Heat Maps -- Time Series Plots -- Network Graphs -- Spatial Data Mapping -- Case Study Example -- Correlation -- Regression -- Time Series Plot -- Clustering -- Classification -- APPENDIX A: Case Study Conclusion -- About the Authors -- Thomas Erl -- Wajid Khattak -- Paul Buhler -- Index 
650 4 |a BIG DATA 
650 4 |a PROCESAMIENTO DE DATOS 
700 1 |a Khattak, Wajid 
700 1 |a Buhler, Paul 
942 |c BK 
952 |0 0  |1 0  |4 0  |6 H28_ERL  |7 0  |9 81939  |a DIF  |b DIF  |d 2025-03-11  |i DIF-04699  |l 0  |o H.2.8 ERL   |p DIF-04699  |r 2025-03-11 17:04:43  |w 2025-03-11  |y BK 
999 |c 56567  |d 56567