A memetic algorithm with self-adaptive local search : TSP as a case study

Detalles Bibliográficos
Autor Principal: Krasnogor, Natalio
Otros autores o Colaboradores: Smith, Jim
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://goo.gl/HYAhO8
Consultar en el Cátalogo
Resumen:In this paper we introduce a promising hybridization scheme for a Memetic Algorithm (MA). Our MA is composed of two optimization processes, a Genetic Algorithm and a Monte Carlo method (MC). In contrast with other GA-Monte Carlo hybridized memetic algorithms, in our work the MC stage serves two purposes: -- when the population is diverse it acts like a local search procedure and -- when the population converges its goal is to diversify the search. To achieve this, the MC is self-adaptive based on observations from the underlying GA behavior; the GA controls the long-term optimization process. We present preliminary, yet statistically significant, results on the application of this approach to the TSP problem.We also comment it successful application to a molecular conformational problem: Protein Folding.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (268,7 kB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170422.0
008 230201s2000 xx o 000 0 eng d
024 8 |a DIF-M6700  |b 6837  |z DIF006111 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Krasnogor, Natalio 
245 1 0 |a A memetic algorithm with self-adaptive local search :  |b TSP as a case study 
300 |a 1 archivo (268,7 kB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a In this paper we introduce a promising hybridization scheme for a Memetic Algorithm (MA). Our MA is composed of two optimization processes, a Genetic Algorithm and a Monte Carlo method (MC). In contrast with other GA-Monte Carlo hybridized memetic algorithms, in our work the MC stage serves two purposes: -- when the population is diverse it acts like a local search procedure and -- when the population converges its goal is to diversify the search. To achieve this, the MC is self-adaptive based on observations from the underlying GA behavior; the GA controls the long-term optimization process. We present preliminary, yet statistically significant, results on the application of this approach to the TSP problem.We also comment it successful application to a molecular conformational problem: Protein Folding. 
534 |a International Genetic and Evolutionary Computation Conference (2000 jul., 8-12 : Las Vegas), pp. 897-994. 
650 4 |a ALGORITMOS 
700 1 |a Smith, Jim 
856 4 0 |u http://goo.gl/HYAhO8 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0446  |7 3  |8 BD  |9 81071  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0446  |r 2025-03-11 17:04:22  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=726  |w 2025-03-11  |y CP 
999 |c 55893  |d 55893