|
|
|
|
LEADER |
00000nam a2200000 a 4500 |
003 |
AR-LpUFIB |
005 |
20250311170359.0 |
008 |
230201s2011 xxua r 000 0 eng d |
020 |
|
|
|a 9780123748560
|
024 |
8 |
|
|a DIF-M5751
|b 5859
|z DIF005367
|
040 |
|
|
|a AR-LpUFIB
|b spa
|c AR-LpUFIB
|
100 |
1 |
|
|a Witten, Ian H.
|
245 |
1 |
0 |
|a Data mining :
|b practical machine learning tools and techniques
|
250 |
|
|
|a 3rd ed.
|
260 |
|
|
|a Amsterdam :
|b Morgan Kaufmann,
|c 2011
|
300 |
|
|
|a xxxiii, 629 p. :
|b il. ;
|c 24 cm.
|
500 |
|
|
|a Incluye índice y bibliografía
|
505 |
0 |
|
|a Part I. Machine Learning Tools and Techniques: -- 1. Whats iIt all about? -- 2. Input: concepts, instances, and attributes -- 3. Output: knowledge representation -- 4. Algorithms: the basic methods -- 5. Credibility: evaluating whats been learned -- Part II. Advanced Data Mining: -- 6. Implementations: real machine learning schemes -- 7. Data transformation -- 8. Ensemble learning -- 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: -- 10. Introduction to Weka -- 11. The explorer -- 12. The knowledge flow interface -- 13. The experimenter -- 14 The command-line interface -- 15. Embedded machine learning -- 16. Writing new learning schemes -- 17. Tutorial exercises for the weka explorer.
|
650 |
|
4 |
|a MINERÍA DE DATOS
|
653 |
|
|
|a aprendizaje automático
|
700 |
1 |
|
|a Frank, Eibe ,
|e Autor
|
700 |
1 |
|
|a Hall, Mark A. ,
|e Autor
|
700 |
1 |
|
|a Autor,
|e Autor
|
942 |
|
|
|c BK
|
952 |
|
|
|0 0
|1 0
|4 0
|6 H28_WIT
|7 0
|9 80060
|a DIF
|b DIF
|d 2025-03-11
|i DIF-03870
|l 0
|o H.2.8 WIT
|p DIF-03870
|r 2025-03-11 17:03:59
|w 2025-03-11
|y BK
|
999 |
|
|
|c 55156
|d 55156
|