El significado de la negación paraconsistente

Detalles Bibliográficos
Publicado en: Principia. Vol. 13 No. 3 (2009),357-370 13. Florianópolis : Epistemology and Logic Research Group. Federal University of Santa Catarina, 2009
Autor Principal: Palau, Gladys
Otros autores o Colaboradores: Duran, Cecilia
Formato: Artículo
Temas:
Acceso en línea:https://www.memoria.fahce.unlp.edu.ar/art_revistas/pr.9665/pr.9665.pdf
https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2009v13n3p357
http://sedici.unlp.edu.ar/handle/10915/88895
Resumen:This work agrees and supports the I. Hacking's thesis regarding the meaning of the logical constants accordingly with Gentzen's Introduction and Elimination Rules of Sequent Calculus, corresponding with the abstract conception of the notion of logical consequence. We would like to ask for the minimum rules that must satisfy a connective in order to be considered as a genuine negation. Mainly, we will refer to both da Costa's C-Systems and Priest's LP system. Finally, we will analyze the presentations of these systems within the Se- quent Logic to show that paraconsistent negation lacks of pure rules of negation-elimination and negation-introduction rules or that they involve other connectives, thus making difficult to assign an univocal meaning to paraconsistent negation.
Descripción Física:p.357-370
ISSN:ISSN 1808-1711

MARC

LEADER 00000nab a2200000 a 4500
001 ARTI09614
008 230422s2009####|||#####|#########0#####d
100 |a Palau, Gladys  |u Universidad de Buenos Aires/Universidad Nacional de La Plata 
700 |a Duran, Cecilia  |u Universidad de Buenos Aires/Universidad Nacional de La Plata 
245 1 0 |a El significado de la negación paraconsistente 
041 7 |2 ISO 639-1  |a es 
300 |a  p.357-370 
520 3 |a This work agrees and supports the I. Hacking's thesis regarding the meaning of the logical constants accordingly with Gentzen's Introduction and Elimination Rules of Sequent Calculus, corresponding with the abstract conception of the notion of logical consequence. We would like to ask for the minimum rules that must satisfy a connective in order to be considered as a genuine negation. Mainly, we will refer to both da Costa's C-Systems and Priest's LP system. Finally, we will analyze the presentations of these systems within the Se- quent Logic to show that paraconsistent negation lacks of pure rules of negation-elimination and negation-introduction rules or that they involve other connectives, thus making difficult to assign an univocal meaning to paraconsistent negation. 
653 |a Paraconsistent logic 
653 |a Negation 
653 |a Sequent calculus 
650 0 4 |a Lógica 
650 0 4 |a Ciencia 
650 0 4 |a Hacking, Ian 
856 4 0 |u https://www.memoria.fahce.unlp.edu.ar/art_revistas/pr.9665/pr.9665.pdf 
952 |u https://www.memoria.fahce.unlp.edu.ar/art_revistas/pr.9665/pr.9665.pdf  |a MEMORIA ACADEMICA  |b MEMORIA ACADEMICA 
856 4 1 |u https://periodicos.ufsc.br/index.php/principia/article/view/1808-1711.2009v13n3p357 
856 4 1 |u http://sedici.unlp.edu.ar/handle/10915/88895 
773 0 |7 nnas  |t Principia.   |g Vol. 13 No. 3 (2009),357-370  |v 13  |l 3  |q 357-370  |d Florianópolis : Epistemology and Logic Research Group. Federal University of Santa Catarina, 2009  |x ISSN 1808-1711 
542 1 |f Esta obra está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional  |u https://creativecommons.org/licenses/by-nc-sa/4.0/