Non-Linear Feedback Neural Networks VLSI Implementations and Applications /

Detalles Bibliográficos
Autor Principal: Ansari, Mohd. Samar
Formato: Libro
Lengua:inglés
Datos de publicación: New Delhi : Springer India : Imprint: Springer, 2014.
Series:Studies in Computational Intelligence, 508
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-81-322-1563-9
Resumen:This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Descripción Física:xxii, 201 p. : il.
ISBN:9788132215639
ISSN:1860-949X ;
DOI:10.1007/978-81-322-1563-9

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000836
003 AR-LpUFI
005 20220927110139.0
007 cr nn 008mamaa
008 130902s2014 ii | s |||| 0|eng d
020 |a 9788132215639 
024 7 |a 10.1007/978-81-322-1563-9  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Ansari, Mohd. Samar.  |9 262094 
245 1 0 |a Non-Linear Feedback Neural Networks   |h [libro electrónico] : ;   |b VLSI Implementations and Applications /  |c by Mohd. Samar Ansari. 
260 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a xxii, 201 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 508 
505 0 |a Introduction -- Background -- Voltage-mode Neural Network for the Solution of Linear Equations -- Mixed-mode Neural Circuit for Solving Linear Equations -- Non-Linear Feedback Neural Circuits for Linear and Quadratic Programming -- OTA-based Implementations of Mixed-mode Neural Circuits -- Appendix A: Mixed-mode Neural Network for Graph Colouring -- Appendix B: Mixed-mode Neural Network for Ranking. 
520 |a This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation. 
650 0 |a Neural networks (Computer science).  |9 259839 
650 0 |a Electronics.  |9 259648 
650 0 |a Microelectronics.  |9 259649 
650 0 |a Electronic circuits.  |9 259798 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Intelligence.  |9 259845 
650 2 4 |a Circuits and Systems.  |9 259651 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks.  |9 261522 
650 2 4 |a Instrumentation.  |9 259652 
776 0 8 |i Printed edition:  |z 9788132215622 
856 4 0 |u http://dx.doi.org/10.1007/978-81-322-1563-9 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28264  |d 28264