Subspace Methods for Pattern Recognition in Intelligent Environment

Detalles Bibliográficos
Otros autores o Colaboradores: Chen, Yen-Wei (ed.), C. Jain, Lakhmi (ed.)
Formato: Libro
Lengua:inglés
Datos de publicación: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Series:Studies in Computational Intelligence, 552
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-642-54851-2
Resumen:This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.
Descripción Física:xvi, 199 p. : il.
ISBN:9783642548512
ISSN:1860-949X ;
DOI:10.1007/978-3-642-54851-2

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000757
003 AR-LpUFI
005 20220927110105.0
007 cr nn 008mamaa
008 140407s2014 gw | s |||| 0|eng d
020 |a 9783642548512 
024 7 |a 10.1007/978-3-642-54851-2  |2 doi 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
245 1 0 |a Subspace Methods for Pattern Recognition in Intelligent Environment   |h [libro electrónico] /   |c edited by Yen-Wei Chen, Lakhmi C. Jain. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a xvi, 199 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 552 
505 0 |a Active Shape Model and Its Application to Face Alignment -- Condition Relaxation in Conditional Statistical Shape Models --  Independent Component Analysis and Its Application to Classification of High-Resolution Remote Sensing Images -- Subspace Construction from Artificially Generated Images for Traffic Sign Recognition -- Local Structure Preserving based Subspace Analysis Methods and Applications -- Sparse Representation for Image Super-Resolution -- Sampling and Recovery of Continuously-Defined Sparse Signals and Its Applications -- Tensor-Based Subspace Learning for Multi-Pose Face Synthesis. 
520 |a This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis. 
650 0 |a Applied mathematics.  |9 259589 
650 0 |a Engineering mathematics.  |9 259590 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Methods of Engineering.  |9 260047 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
650 2 4 |a Pattern Recognition.  |9 259838 
700 1 |a Chen, Yen-Wei,   |e ed.  |9 261921 
700 1 |a C. Jain, Lakhmi,   |e ed.  |9 261922 
776 0 8 |i Printed edition:  |z 9783642548505 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-54851-2 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28185  |d 28185