Intuitionistic Preference Modeling and Interactive Decision Making

Detalles Bibliográficos
Autor Principal: Xu, Zeshui
Formato: Libro
Lengua:inglés
Datos de publicación: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Series:Studies in Fuzziness and Soft Computing, 280
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-642-28403-8
Resumen:This book offers an in-depth and comprehensive introduction to the priority methods of intuitionistic preference relations, the consistency and consensus improving procedures for intuitionistic preference relations, the approaches to group decision making based on intuitionistic preference relations, the approaches and models for interactive decision making with intuitionistic fuzzy information, and the extended results in interval-valued intuitionistic fuzzy environments.
Descripción Física:xi, 233 p. :
ISBN:9783642284038
ISSN:1434-9922 ;
DOI:10.1007/978-3-642-28403-8

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000602
003 AR-LpUFI
005 20220927110000.0
007 cr nn 008mamaa
008 130829s2014 gw | s |||| 0|eng d
020 |a 9783642284038 
024 7 |a 10.1007/978-3-642-28403-8  |2 doi 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
100 1 |a Xu, Zeshui.  |9 261022 
245 1 0 |a Intuitionistic Preference Modeling and Interactive Decision Making   |h [libro electrónico] /   |c by Zeshui Xu. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a xi, 233 p. :  
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 280 
505 0 |a 1 Intuitionistic Preference Relations.-1.1 Concepts and Operations -- 1.2 Estimation Algorithms for Acceptable Incomplete Intuitionistic Fuzzy Preference Relations -- 1.2.1 The Estimation Algorithm for an Acceptable Incomplete Intuitionistic Fuzzy Preference Relation with the Least Judgements.-1.2.2 The Estimation Algorithm for Acceptable Incomplete Fuzzy Preferenc Relation with More Known Judgements.-1.2.3 Illustrative Example -- 1.3 Group Decision Making with Incomplete Interval-valued Intuitionistic Preference Relation -- 1.3.1 Incomplete Interval-valued Intuitionistic Preferenc Relations -- 1.3.2 A Procedure for Constructing an Interval-valued Intuitionistic Preference Relation with Multiplicative Transitivity -- 1.3.3 An approach to Group Decision Making with Incomplete Interval-valued Intuitionistic Preference Relation.-1.3.4 Example Illustration.-1.4 Iterative Algorithms for Improving Consistency of Institutionistic Preferenc Relation -- 1.4.1 Some Properties of a Multiplicative Consistent Intuitionistic Preference Relation.-1.4.2 Improving Consistency of an Intuitionistic Preference Relation.-1.4.3 Improving Consistency of Intuitionistic Preference Relations in Group Decision Making.-1.5 Consistency and Consensus Improving Procedures of Interval-valued Intuitionistic Preference Relations.-1.5.1 A Property of Multiplicative Consistent Interval-valued Intuitionistic Preference Relations.-1.5.2 Construction of Multiplicative Consistent or Approximate  Multiplicative Consistent Interval-valued Intuitionistic Preference Relations.-1.5.3 Consensus Improving Procedure of Interval-valued Intuitionistic Preference Relations in Group Decision Making.-1.6 Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making.-1.6.1 Compatibility Analysis of Intuitionistic Preference Relations -- 1.6.2 Extended Results in Interval-valued Intuitionistic Fuzzy Situations.-1.6.3 Numerical Analysis.-1.7 A Method for Estimating Attribute Weights from Intuitionistic Preference Relations.-1.7.1 A new Concepts of Consistent Intuitionistic Preference Relation.-1.7.2 A Method for Estimating Attribute Weights.-1.7.3 Illustrative Exampls.-1.8 An Error-Analysis-Based Method for the Priority of an Intuitionistic Preference Relation.-1.8.1 Error Analysis.-1.8.2 An Error-Analysis-Based Priority Method.-1.8.3 Numerical Analysis.-1.9 Ranking Alternatives Based on Intuitionistic Preference Relation.-1.10 Intuitionistic Fuzzy Density-Based Aggregation Operators and Their Applications to Group Decision Making with Intuitionistic Preference  Relations.-1.10.1 Basic Concepts and Measures.-1.10.2 Intuitionistic Fuzzy Density-Based Aggregation Operators.-1.11 Preference Relations Based on Intuitionistic Multiplicative Information.-1.11.1 Intuitionistic Multiplicative Preference Relation.-1.11.2 Intuitionistic Multiplicative Aggregation Operators.-1.11.3 Decision Making with Intuitionistic Multiplicative Preference Relation.-1.12 Intuitionistic Multiplicative Group Decision Making with the Extended t-conorm and t-norm -- 1.12.1 Some Intuitionistic Multiplicative Operations Based on the Extended t-conorm and t-norm.-1.12.2 Intuitionist ic Multiplicative Aggregation Operators Based on the Extended t-conorms and t-norms.-1.12.3 Some Aggregation Operators Reflecting the Correlations of the Aggregated Arguments.-1.12.4 An Approach to Group Decision Making with Intuitionistic Multiplicative Preference Relations.-2 Interactive Intuitionistic Fuzzy Multi-Attribute Decision Making.-2.1 Interactive Intuitionistic Fuzzy Multi-Attribute Decision Making by Identifying and Eliminating Dominated Alternatives.-2.2 Interactive Intuitionistic Fuzzy Multi-Attribute Decision Making Based on Nonlinear Optimization Models.-2.2.1 A Satisfaction-Degree-Based Method.-2.2.2 An Interactive Method.-2.2.3 Extended Results in Interval-Valued Intuitionistic Fuzzy Situations -- References. 
520 |a This book offers an in-depth and comprehensive introduction to the priority methods of intuitionistic preference relations, the consistency and consensus improving procedures for intuitionistic preference relations, the approaches to group decision making based on intuitionistic preference relations, the approaches and models for interactive decision making with intuitionistic fuzzy information, and the extended results in interval-valued intuitionistic fuzzy environments. 
650 0 |a Business.  |9 261220 
650 0 |a Operations research.  |9 259877 
650 0 |a Decision making.  |9 259878 
650 1 4 |a Business and Management.  |9 260775 
650 2 4 |a Operation Research/Decision Theory.  |9 260858 
776 0 8 |i Printed edition:  |z 9783642284021 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28403-8 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28030  |d 28030