Fuzzy Social Choice Models Explaining the Government Formation Process /

Detalles Bibliográficos
Autor Principal: C. Casey, Peter
Otros autores o Colaboradores: B. Gibilisco, Michael, A. Goodman, Carly, Pook, Kelly Nelson, N. Mordeson, John, J. Wierman, Mark, D. Clark, Terry
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Studies in Fuzziness and Soft Computing, 318
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-08248-6
Resumen:This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made.  The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.  Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes partiesâ_T fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the predictions are compared with those made by two conventional approaches as well as with the government that was actually formed. The comparison shows that, in most cases, the fuzzy approaches outperform their conventional counterparts. .
Descripción Física:xiii, 183 p. : il.
ISBN:9783319082486
ISSN:1434-9922 ;
DOI:10.1007/978-3-319-08248-6

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000594
003 AR-LpUFI
005 20220927105957.0
007 cr nn 008mamaa
008 140620s2014 gw | s |||| 0|eng d
020 |a 9783319082486 
024 7 |a 10.1007/978-3-319-08248-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a C. Casey, Peter.  |9 261506 
245 1 0 |a Fuzzy Social Choice Models   |h [libro electrónico] : ;   |b Explaining the Government Formation Process /   |c by Peter C. Casey...[et al.]. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xiii, 183 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 318 
505 0 |a A Fuzzy Public Choice Model -- Fuzzy Preferences: Extraction from Data and Their Use in Public Choice Models -- Fuzzy Single-Dimensional Public Choice Models -- Fuzzy Single-Dimensional Models -- Multi-Dimensional Models -- Government Formation Process -- The Beginnings of a Weighted Model & New Frontiers. 
520 |a This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made.  The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.  Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes partiesâ_T fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the predictions are compared with those made by two conventional approaches as well as with the government that was actually formed. The comparison shows that, in most cases, the fuzzy approaches outperform their conventional counterparts. . 
650 0 |a Engineering.  |9 259622 
650 0 |a Political science.  |9 261507 
650 0 |a Mathematics.  |9 259587 
650 0 |a Social sciences.  |9 261106 
650 0 |a Computational intelligence.  |9 259845 
650 2 4 |a Mathematics in the Humanities  |9 261508 
700 1 |a B. Gibilisco, Michael.  |9 261104 
700 1 |a A. Goodman, Carly.  |9 261509 
700 1 |a Pook, Kelly Nelson.  |9 261510 
700 1 |a N. Mordeson, John.  |9 261110 
700 1 |a J. Wierman, Mark.  |9 261111 
700 1 |a D. Clark, Terry.  |9 261112 
776 0 8 |i Printed edition:  |z 9783319082479 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08248-6 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28022  |d 28022