EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V

Detalles Bibliográficos
Otros autores o Colaboradores: Tantar, Alexandru-Adrian (ed.), Tantar, Emilia (ed.), Sun, Jian-Qiao (ed.), Zhang, Wei (ed.), Ding, Qian (ed.), Schutze, Oliver (ed.), Emmerich, Michael (ed.), Legrand, Pierrick (ed.), Del Moral, Pierre (ed.), Coello Coello, Carlos A (ed.)
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Advances in Intelligent Systems and Computing, 288
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-07494-8
Resumen:This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1â_"4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitionerâ_Ts view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitionerâ_Ts perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the conference, through the Computational Game Theory, Local Search and Optimization, Genetic Programming, Evolutionary Multi-objective optimization tracks.
Descripción Física:xiv, 336 p. : il.
ISBN:9783319074948
ISSN:2194-5357 ;
DOI:10.1007/978-3-319-07494-8

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000570
003 AR-LpUFI
005 20220927105947.0
007 cr nn 008mamaa
008 140604s2014 gw | s |||| 0|eng d
020 |a 9783319074948 
024 7 |a 10.1007/978-3-319-07494-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
245 1 0 |a EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V  |h [electronic resource] /   |c edited by Alexandru-Adrian Tantar...[et al.]. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xiv, 336 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Intelligent Systems and Computing,  |x 2194-5357 ;  |v 288 
505 0 |a Set Oriented Numerics -- Computational Game Theory -- Machine Learning Applied to Networks -- Complex Networks and Landscape Analysis -- Local Search and Optimization -- Genetic Programming -- Evolutionary Multiobjective Optimization -- Practical Aspects of Evolutionary Algorithms. 
520 |a This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1â_"4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitionerâ_Ts view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitionerâ_Ts perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the conference, through the Computational Game Theory, Local Search and Optimization, Genetic Programming, Evolutionary Multi-objective optimization tracks. 
650 0 |a Engineering.  |9 259622 
650 0 |a Computational intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
700 1 |a Tantar, Alexandru-Adrian,   |e ed.  |9 260474 
700 1 |a Tantar, Emilia,   |e ed.  |9 260475 
700 1 |a Sun, Jian-Qiao,   |e ed.  |9 261434 
700 1 |a Zhang, Wei,   |e ed.  |9 261435 
700 1 |a Ding, Qian,   |e ed.  |9 261436 
700 1 |a Schutze, Oliver,   |e ed.  |9 261437 
700 1 |a Emmerich, Michael,   |e ed.  |9 261438 
700 1 |a Legrand, Pierrick,   |e ed.  |9 260478 
700 1 |a Del Moral, Pierre,   |e ed.  |9 261439 
700 1 |a Coello Coello, Carlos A,   |e ed.  |9 260473 
776 0 8 |i Printed edition:  |z 9783319074931 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-07494-8 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27998  |d 27998