Support Vector Machines and Evolutionary Algorithms for Classification Single or Together? /

Detalles Bibliográficos
Autor Principal: Stoean, Catalin
Otros autores o Colaboradores: Stoean, Ruxandra
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Intelligent Systems Reference Library, 69
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-06941-8
Resumen:When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this â_~masked heroâ_T be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.
Descripción Física:xvi, 122 p. : il.
ISBN:9783319069418
ISSN:1868-4394 ;
DOI:10.1007/978-3-319-06941-8

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000546
003 AR-LpUFI
005 20220927105936.0
007 cr nn 008mamaa
008 140515s2014 gw | s |||| 0|eng d
020 |a 9783319069418 
024 7 |a 10.1007/978-3-319-06941-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Stoean, Catalin.  |9 261368 
245 1 0 |a Support Vector Machines and Evolutionary Algorithms for Classification   |h [libro electrónico] : ;   |b Single or Together? /  |c by Catalin Stoean, Ruxandra Stoean. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xvi, 122 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 69 
505 0 |a Support Vector Machines -- Evolutionary Algorithms -- Support Vector Machines and Evolutionary Algorithms. 
520 |a When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this â_~masked heroâ_T be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance. 
650 0 |a Engineering.  |9 259622 
650 0 |a Computational intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
700 1 |a Stoean, Ruxandra.  |9 261369 
776 0 8 |i Printed edition:  |z 9783319069401 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06941-8 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27974  |d 27974