Haar Wavelets With Applications /

Detalles Bibliográficos
Autor Principal: Lepik, Ãolo
Otros autores o Colaboradores: Hein, Helle
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Mathematical Engineering,
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-04295-4
Resumen:This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
Descripción Física:x, 207 p. : il.
ISBN:9783319042954
ISSN:2192-4732
DOI:10.1007/978-3-319-04295-4

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000393
003 AR-LpUFI
005 20220927105831.0
007 cr nn 008mamaa
008 140109s2014 gw | s |||| 0|eng d
020 |a 9783319042954 
024 7 |a 10.1007/978-3-319-04295-4  |2 doi 
050 4 |a TA355 
050 4 |a TA352-356 
072 7 |a TGMD4  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI018000  |2 bisacsh 
100 1 |a Lepik, Ãolo.  |9 260964 
245 1 0 |a Haar Wavelets   |h [libro electrónico] : ;   |b With Applications /   |c by Ulo Lepik, Helle Hein. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a x, 207 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4732 
505 0 |a Preliminaries -- Haar wavelets -- Solution of ordinary differential equations (ODEs) -- Stiff equations -- Integral equations -- Evolution equations -- Solving PDEs with the aid of two-dimensional Haar wavelets -- Fractional calculus -- Applying Haar wavelets in the optimal control theory -- Buckling of elastic beams -- Vibrations of cracked Euler-Bernoulli beams -- Free vibrations on non-uniform and axially functionally graded Euler-Bernoulli beams -- Vibrations of functionally graded Timoshenko beams -- Applying Haar wavelets in damage detection using machine learning methods. 
520 |a This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions. 
650 0 |a Engineering.  |9 259622 
650 0 |a Integral equations.  |9 260965 
650 0 |a System theory.  |9 259588 
650 0 |a Computer mathematics.  |9 259612 
650 0 |a Physics.  |9 259968 
650 0 |a Vibration.  |9 259591 
650 0 |a Dynamics.  |9 259593 
650 2 4 |a Control.  |9 263886 
650 2 4 |a Mathematical Methods in Physics.  |9 260603 
650 2 4 |a Computational Science and Engineering.  |9 260310 
700 1 |a Hein, Helle.  |9 260966 
776 0 8 |i Printed edition:  |z 9783319042947 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-04295-4 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27821  |d 27821