Algorithms for Sparsity-Constrained Optimization

Detalles Bibliográficos
Autor Principal: Bahmani, Sohail
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research, 261
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-01881-2
Resumen:This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a"greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
Descripción Física:xxiI, 107 p : il.
ISBN:9783319018812
ISSN:2190-5053 ;
DOI:10.1007/978-3-319-01881-2