Computing with Memory for Energy-Efficient Robust Systems

Detalles Bibliográficos
Autor Principal: Paul, Somnath
Otros autores o Colaboradores: Bhunia, Swarup
Formato: Libro
Lengua:inglés
Datos de publicación: New York, NY : Springer New York : Imprint: Springer, 2014.
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-1-4614-7798-3
Resumen:This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime.  The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior.  Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.  ·         Introduces new paradigm for hardware reconfigurable frameworks, which leverages dense memory array as a malleable resource, which can be used for information storage as well as computation; ·         Merges spatial and temporal computing to minimize interconnect overhead and achieve better scalability compared to state-of-the-art reconfigurable computing platforms; ·         Enables efficient mapping of diverse data-intensive applications from domains of signal processing, multimedia and security applications.
Descripción Física:xiii, 210 p. : il.
ISBN:9781461477983
DOI:10.1007/978-1-4614-7798-3

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000091
003 AR-LpUFI
005 20220927105626.0
007 cr nn 008mamaa
008 130906s2014 xxu| s |||| 0|eng d
020 |a 9781461477983 
024 7 |a 10.1007/978-1-4614-7798-3  |2 doi 
050 4 |a TK7888.4 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
100 1 |a Paul, Somnath.  |9 260061 
245 1 0 |a Computing with Memory for Energy-Efficient Robust Systems   |h [libro electrónico] /   |c by Somnath Paul, Swarup Bhunia. 
260 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a xiii, 210 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I Introduction -- Challenges in Computing for Nanoscale Technologies -- A Survey of Computing Architectures -- Motivation for a Memory-Based Computing Hardware -- Part II Memory Based Computing -- Key Features of Memory-Based Computing -- Overview of Hardware and Software Architectures -- Application of Memory-Based Computing -- Part III Hardware Framework -- A Memory Based Generic Reconfigurable Framework -- MAHA Hardware Architecture -- Part IV Software Framework -- Application Analysis -- Application Mapping to MBC Hardware. 
520 |a This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime.  The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior.  Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.  ·         Introduces new paradigm for hardware reconfigurable frameworks, which leverages dense memory array as a malleable resource, which can be used for information storage as well as computation; ·         Merges spatial and temporal computing to minimize interconnect overhead and achieve better scalability compared to state-of-the-art reconfigurable computing platforms; ·         Enables efficient mapping of diverse data-intensive applications from domains of signal processing, multimedia and security applications. 
650 0 |a Engineering.  |9 259622 
650 0 |a Microprocessors.  |9 259640 
650 0 |a Electronics.  |9 259648 
650 0 |a Microelectronics.  |9 259649 
650 0 |a Electronic circuits.  |9 259798 
650 2 4 |a Circuits and Systems.  |9 259651 
650 2 4 |a Instrumentation.  |9 259652 
650 2 4 |a Processor Architectures.  |9 259645 
700 1 |a Bhunia, Swarup.  |9 260062 
776 0 8 |i Printed edition:  |z 9781461477976 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-7798-3 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27519  |d 27519