Neural Networks and Statistical Learning

Detalles Bibliográficos
Autor Principal: Du, Ke-Lin
Otros autores o Colaboradores: Swamy, M. N. S.
Formato: Libro
Lengua:inglés
Datos de publicación: London : Springer London : Imprint: Springer, 2014.
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-1-4471-5571-3
Resumen:Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.
Descripción Física:xxvii, 824 p. : il.
ISBN:9781447155713
DOI:10.1007/978-1-4471-5571-3

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000032
003 AR-LpUFI
005 20220927105559.0
007 cr nn 008mamaa
008 131206s2014 xxk| s |||| 0|eng d
020 |a 9781447155713 
024 7 |a 10.1007/978-1-4471-5571-3  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Du, Ke-Lin.  |9 259836 
245 1 0 |a Neural Networks and Statistical Learning   |h [libro electrónico] /   |c by Ke-Lin Du, M. N. S. Swamy. 
260 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a xxvii, 824 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Fundamentals of Machine Learning -- Perceptrons -- Multilayer perceptrons: architecture and error backpropagation -- Multilayer perceptrons: other learing techniques -- Hopfield networks, simulated annealing and chaotic neural networks -- Associative memory networks -- Clustering I: Basic clustering models and algorithms -- Clustering II: topics in clustering -- Radial basis function networks -- Recurrent neural networks -- Principal component analysis -- Nonnegative matrix factorization and compressed sensing -- Independent component analysis -- Discriminant analysis -- Support vector machines -- Other kernel methods -- Reinforcement learning -- Probabilistic and Bayesian networks -- Combining multiple learners: data fusion and emsemble learning -- Introduction of fuzzy sets and logic -- Neurofuzzy systems -- Neural circuits -- Pattern recognition for biometrics and bioinformatics -- Data mining. 
520 |a Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining. 
650 0 |a Engineering.  |9 259622 
650 0 |a Data mining.  |9 259837 
650 0 |a Pattern recognition.  |9 259838 
650 0 |a Neural networks (Computer science).  |9 259839 
650 0 |a Computational intelligence.  |9 259845 
650 2 4 |a Mathematical Models of Cognitive Processes  |9 259841 
650 2 4 |a Knowledge Discovery.  |9 259842 
700 1 |a Swamy, M. N. S.  |9 259843 
776 0 8 |i Printed edition:  |z 9781447155706 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-5571-3 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a GEB  |c 27460  |d 27460