Numerical simulation in applied geophysics /

Detalles Bibliográficos
Autor Principal: Santos, Juan Enrique
Otros autores o Colaboradores: Gauzellino, Patricia Mercedes
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Birkhauser, 2016.
Series:Lecture notes in geosystems mathematics and computing
Temas:
Resumen:Waves in poroelastic solid saturated by a single-phase fluid - A poroelastic solid saturated by two immiscible fluids - A porelastic solid saturated by a three-phase fluid - Waves in fluid-saturated proelastic matrix composed of two wakly coupled solids - Absorbing boundary conditions in elastic and poroelastic media - Solution of differential equations using the finite element method - Modeling Biot media at the meso-scale using a finite element approach - The meso-scale. Fractures as thin layers in Biot media and induced anisotropy - Fractures modeled as boundary conditions in Biot media and induced anisotropy - The macro-scale. Seismic motitoring of CO2 sequestration - Wave propagation in partially frozen porous media - The macro-scale. Wave propagation in transversely isotropic media.
Descripción Física:309 p. : figuras
ISBN:9783319484563

MARC

LEADER 00000Cam#a22000005a#4500
001 INGC-MON-019552
003 AR-LpUFI
005 20221019005828.0
008 180730s2016||||sz |||||||||||||||||eng d
020 |a 9783319484563 
040 |a AR-LpUFI  |b spa  |c AR-LpUFI 
080 |a 550.3 
100 1 |a Santos, Juan Enrique.   |9 306144 
245 1 0 |a Numerical simulation in applied geophysics /   |c Juan Enrique Santos, Patricia Mercedes Gauzellino. 
260 |a Cham :   |b Birkhauser,   |c 2016. 
300 |a 309 p. :   |b figuras 
490 |a Lecture notes in geosystems mathematics and computing 
520 2 |a Waves in poroelastic solid saturated by a single-phase fluid - A poroelastic solid saturated by two immiscible fluids - A porelastic solid saturated by a three-phase fluid - Waves in fluid-saturated proelastic matrix composed of two wakly coupled solids - Absorbing boundary conditions in elastic and poroelastic media - Solution of differential equations using the finite element method - Modeling Biot media at the meso-scale using a finite element approach - The meso-scale. Fractures as thin layers in Biot media and induced anisotropy - Fractures modeled as boundary conditions in Biot media and induced anisotropy - The macro-scale. Seismic motitoring of CO2 sequestration - Wave propagation in partially frozen porous media - The macro-scale. Wave propagation in transversely isotropic media. 
650 4 |a SIMULACION NUMERICA  |9 275356 
650 4 |a GEOFISICA APLICADA  |9 306145 
650 4 |a PROPAGACION DE ONDAS  |9 266036 
700 1 |a Gauzellino, Patricia Mercedes.  |9 306146 
929 |a 42380 DON Gauzellino 
942 |c LIB  |6 _ 
999 |a GEB  |c 19551  |d 19551